

Mechanical Factors in the Reflux Barrier

Ravinder K. Mittal MD Professor of Medicine University of California San Diego

UC San Diego Health Sciences

MAGNIFICENT AND SPELLBINDING." —DAVID McCULLOUGH WALTER ISAACSON

402

ies. As he had done with machines, he illustrated body parts using exploded views, multiple angles, and stacked-up layers (fig. 104). He studied the movements of various muscles and bones, as if they opprotod liles stringer and la

Predicting Function from the Structure

BY THE AUTH end in bones adjoining one another," he explained. "They never arise ste and end on one and the same bone because nothing would be able to move." It all added up to an ingenious mechanism of moving parts: "The joints between bones obey the tendon, and the tendon obeys the muscle, and the muscle the nerve."14

PHYSIOLOGICAL REVIEWS

Published and copyright by

THE AMERICAN PHYSIOLOGICAL SOCIETY, INC

VOLUME 38

OCTOBER 1958

Esophageal Motility

FRANZ J. INGELFINGER

An incompetent EGJ (low tone and intermittent relaxations) leads to GERD and overtly competent sphincter (impaired relaxation) leads to Achalasia. Most of benign & even some malignant (Barrett's esophagus and adenocarcinoma) disorder of the esophagus are due to dysfunctional sphincter.

The barrier has been credited to several entities, acting independently or in concert. In general, three categories of mechanisms have been postulated;

1) Pinching of angulation of the esophagus by diaphragmatic action (Crural Diaphragm)

2) Valvular structure created by the oblique entry of esophagus into stomach or my mucosal redundancy (Flap Valve)

³ Function Does Not Match with Anatomy

The importance of each of these mechanism can be supported – or challenged-on the basis of evidence, that is voluminous but inconclusive.

Ironically enough, inferential evidence drawn from anatomical realities (or supposed realities) suffers from insufficient physiologic study; controversy, the nicest function phenomenon lack morphological basis

Pathophysiology of Gastroesophageal Reflux Disease

Jan Tack¹

John E. Pandolfino²

Under normal circumstances, reflux into the esophagus is prevented by the anti-reflux barrier, which is a complex anatomic zone made up of multiple components, including the lower esophageal sphincter the extrinsic crural diaphragm, and the supporting structures of the gastroesophageal flap valve. When these protective components are compromised, the deleterious effects are additive, resulting in increasing numbers of reflux events and

Gastroenterology 2018;154:277–288

Techniques to Measure LES Pressure

- Balloons (oncometry) air filled balloon Kronecker H, Meltzer S
- **Open tip catheters** Charlie Code high pressure zone identification
- **Infusion manometry** Lauren D Harris LES pressure, not HH important GERD
- **Sleeve Sensor** John Dent Transient LES relaxation
- Electrode Sleeve Sensor Ravinder Mittal Crural diaphragm
- High Resolution Manometry/Color topography Ray Clouse
- **3D LES manometry** Peter Kahrilas
- **Functional Luminal Imaging Probe Hans Gregersen**

Neurogastroenterology & Motility

Neurogastroenterol Motil (2011) 23, e461-e469

3D-high resolution manometry of the esophagogastric junction

- Circumferential Asymmetry of LES
- Circumferential Asymmetry of Crural Diaphragm (EGJP)
- EGJ High Pressure Zone is longer on one side

Am J Physiol Gastrointest Liver Physiol 313: G212-G219, 2017

В

In EGJ Pressure Profile (n=10)

Circumferential Orientation

12 O' clock – anterior

- 6 O' clock posterior
- 9 O' clock lesser curvature
- 3 O' clock greater curvature

How can the EGJ HPZ be Horizontal Esophagus Enters Stomach at a Right Angle

Catheter & High-Pressure Zone are at Right Angle to Each Other

Myoarchitecture of the Lower Esophageal Sphincter

Three-Dimensional High-Resolution Reconstruction of the Human Gastro-Oesophageal Junction

R. YASSI¹, L.K. CHENG¹, S. AL-ALI², G. SANDS¹, D. GERNEKE¹, I. LEGRICE^{1,3}, A.J. PULLAN^{1,4}, and J.A. WINDSOR⁵

¹Auckland Bioengineering Institute, The University of Auckland, New Zealand ²Department of Anatomy with Radiology, The University of Auckland, New Zealand ³Department of Physiology, The University of Auckland, New Zealand ⁴Department of Engineering Science, The University of Auckland, New Zealand ⁵Department of Surgery, The University of Auckland, New Zealand

652 Axial Sections – each 25 MB

Myoarchitecture of Lower Esophageal Sphincter

Esophagus circular muscle Distal esophageal circular muscle cross at the angle of HIS to form the sling fibers on the stomach

Longitudinal Muscle Esophagus

Longitudinal Muscle Stomach

Axial Section across the Sling Fibers of the Stomach

Nice Function Matches Morphological Basis

High Pressure Zone – Longer towards Lesser Curvature

LES is not a ring or donut like muscle, It is a purse string

Three-Dimensional Myoarchitecture of the Lower Esophageal Sphincter and Esophageal Hiatus Using Optical Sectioning Microscopy

Sci Rep. 2017 Oct 13;7(1):13188

CD is not a ring or donut like muscle

Crural Diaphragm: Double Purse String

Ali Zifan¹, Dushyant Kumar¹, Leo K. Cheng² & Ravinder K. Mittal¹

Right Crus Crossing of Fibers

Illustration by Ravinder Mittal

RAJ K. GOYAL MD.

Lower Esophageal Sphincter - LES

Myogenic Tone – Unique property of LES

Modulatory influence by excitatory (cholinergic) and inhibitory (NO and VIP nerves)

Vagus nerve stimulation causes LES relaxation through NO nerves

Sympathetic nerve stimulation causes LES contraction

Electrical and Mechanical Activity in the Human Lower Esophageal Sphincter during Diaphragmatic Contraction

Journal of Clinical Investigation 1988

Skeletal Muscle Filter 2: 100-200Hz

Skeletal 100-200Hz Filter and RMS 100msec

Crural Diaphragm/Hiatal Function at EGJ

Increase in EGJ pressure

With inspiration, the amplitude of increase is related to the depth of inspiration/force of diaphragmatic contraction

With abdominal compression, straight leg raise, coughing, Valsalva and all those maneuvers that increase abdominal pressure, and pressure gradients between the esophagus and stomach

Trans diaphragmatic Pressure (Gastric - Esophageal Pressure - pdi) Driving Force of GER & EGJ the Barrier

Dynamic EGJ Barrier Function

End expiratory pressure under resting condition is due to LES

Increase with inspiration, abdominal compression, cough, Valsalva and other maneuvers is due to CD

Transient Lower Esophageal Sphincter Relaxation

Breathing Causes Reflux in Hiatal Hernia if LES pressure is Low

Antireflux Barrier – 2021

Better Measurement Techniques Have Allowed to Delineate

> Structure & function of smooth muscle lower esophageal sphincter

- Structure and function of crural diaphragm (Hiatus)
- > Flap valve/same as Hiatus Hernia Separation between the LES and Hiatus

Function Matches with Anatomy

Challenges in Antireflux Barrier Function Understanding – 2021

- > Not all Heartburn is GERD or the Spectrum of GERD
- Cause of low LES pressure in GERD
- > Cause of Hiatal Dysfunction in GERD
- Cause of Hiatus Hernia